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ABSTRACT

Three different forms of congestion of production factors
are defined and analyzed within an axiomatic theory of
production. These forms of congestion are used to charac-
terize a law of variable proportion.
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CONGESTION OF PRODUCTION FACTORS

by

Rolf Fare and Leif Svensson

1. INTRODUCTION

Examples of production technologies exhibiting congestion in the sense
that if a proper subset of production factors (inputs) are kept fixed,
increases in the others may obstruct output, are frequently found in agri-
culture, transportation and engineering. Despite the apparent dissimilarity
of such production technologies a general axiomatic treatment is offered in
this paper. Three forms of congestion are introduced to distinguish
different strengths. These forms of congestion are related to each other
under production theoretical commonly made assumptions. They are also
analyzed in terms of production concepts such as essentiality, limitationality
and null jointness of inputs. In the final section the three forms of
congestion are used in dealing with a law of variable proportions.

n

A function ¢ : R, > l{+ between exogenous inputs (x) and net

output (u) 1is called a production function if it satisfies the following

axioms stated by Shephard (see [3]).

¢.1 ¢(0) =0, and ¢(x) > 0 for some x > 0 .(1)

$.2 ¢(x) 4s finite for ||{x|| bounded.

.3 ¢(x - x) > o(x) 4f X >1.

.4 For o6() * x) >0, ¢(X » x) > 4> as A =+ 4= ,

$.5 ¢(x) 1is upper semi-continuous in x .

$.6 The efficient subset E(u) : = {x | ¢ (x) 2uU,y<x= ¢(y) < u}

is bounded for u > 0 and E(0) : = 0 .

(l)x > 0 means x

> 432 0,112, vi; 00, %90,

| N




Congestion is next analyzed within the framework ¢.1 - ¢.6 for

a production technology.
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2. CONGESTION

For the purpose of distinguishing between different strengths of
congestion of production factors, three forms are defined and discussed

in this paper, namely:

Definition 1:

A factor combination {v s ey vn} » 0 <k <n, is output-

k+1° Vk+2
limitational (OL) congested at x° € IR: A ¢(x° +y) g ¢(x°) , for

(2)
all y e D(vl,vz, ciwioy vk) :

Definition 2:

R e o L A e

A factor combination {vn+1,vk+2. ety vn} » 0 <k <n, is monotone

¥

; output-limitational (MOL) congested at x° e lq: e ¢(xo +y'") <
1y ¢(x° +y'), for all y'' , y' € D(vl,vz, Siah vk) with y'' > 9"

Definition 3:

A factor combination (v 0 2 k <n, is output-~

1 V2 vn} =

¢ R, if ¢ +y) =0, for all

prohibitive (OP) congested at x y

y € D(vl,vz, Civy vk) .

Clearly if a factor combination {“k+1’vn+2’ shiv vn} is OP-

congested at X € R: it is MOL-congested at that input combination.

Also if {vk+ 20 ses vn} is MOL-congested at x ¢ ?B: it is OL-

17Vt
congested there. In general, however, the converse is not true, hence
the three definitions distinguish different strength of congestion. The

following two examples of production functions clarify this.

(2)

D(vl,vz, oo by vk) : = {x € lﬂ: | x>0, x, = 0 &8 0,24 vaey k} é

i

e v i I




Q) ¢(x) : = min {xl,Ile - le} ;
(2) $(x) : = min {xl,le i

In Example 1, the production factor x, is OL-congested at (xl,xz) = (1,1) ,
but it is not MOL-congested at that point, since for y'' = (0,2) ,

y'=(0,1) , ¢(x+y'"") =0<¢(x+y')=1.

In the second example with X, = x, = 2 it is clear that x,

1
is MOL-congested at (2,2) but not OP-congested.

oo

On the other hand, if the production function exhibits strong

disposability of inputs, (i.e., x' > x = $(x') > ¢(x)) , then in definitions

HERTIENT

1 and 2, the inequality sign may be replaced by equality and then obviously
MOL- and OL-congestion coincide.

To continue, consider the following subsets of factors of production

A(OL):-{xe R | {

. OL-congested at x} 5

Vir1*Via2® vn} is

A(MOL):'-{xe R | {

s M vn} is MOL-congested at x} : 3

Vit Vka2

and i

A(OP) : -{x e R | {

s Kb2? tt vn} is OP-congested at x} 4

Vk+1,\)

It is clear from the above discussion that A(OP) C A(MOL) C A(OL)

and that A(OL) = AMOL) : = {x | ¢(x) = ¢(x + y) for all

y € D(vl,vz, seoy vk)} whenever the production function ¢ exhibits

strong disposability of inputs. Also note that under this disposability

condition, A(OP) may be nonempty with A(OL) ¥ A(OP) . The following

E | production function is an illustration of this case.
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(3) ¢(x) : = min {max {0,x1 - a},xz} ,a>0,.

Clearly the production function (3) exhibits strong disposability
of inputs and for a = 1 , the input vector (xl,xz) = (1,1) € A(OP)
with the second factor OP-congested. (xl,xz) = (3,1) belongs to
A(OL) with X, OL-congested but (3,1) ¢ A(oP) , 1.e., A(OP) 1is
nonempty with A(OL) # A(OP) .

For the case where only one factor is congested (i.e., k =n - 1)
it can be shown that for a quasi-concave production function ¢ ,

A(OL) = A(MOL) .

Proposition 1:

Let the production function ¢ be quasi-concave. If D(vl,vz, S vk)
is one dimensional (i.e., D(vl,vz, I vk) = D(vl,vz, S vn_l)) »

then A(OL) = A(MOL) .

Proof:

Since A(MOL) C A(OL) it is sufficient to assume that A(QL) is
nonempty and to prove that A(OL) C A(MOL) . Hence let x° € A(OL) and

let y'' , y' ¢ D(v ) with y' < y'' . Then since
-1 -

12Ves cres Vg
D(vl,vz, "4 vn—l) has dimension one and y' < s AR x° & y' 1lies on
the line segment between x° and x° + y'' . Hence by quasi-concavity,
0(x° + y") > min (6%, x° + y'")} . Thus, since ¢ (x°) 2 o (x° + y")
(x° € A(OL)) , 1t follows that ¢G° +y') > ¢x° +y'") d.e.,

x° € A(MOL) . Q.E.D.

Unfortunately, as illustrated below, this proposition does not

hold when there are more than one congested factor of production.

i |
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; ) ?% ; (4) ¢(x) : = min {xl, max {0,x, - x5 - xl}} e
‘:
; The production function (4) is quasi-concave and it is next seen
i that the factor combination {xz,xal is OL-congested, at
é (xl,xz,x3) = (1,3,1) but not MOL-congested there. From (4) it follows
#
E that,
=
E ]
: ¢(1,3 + Yyl + v3) = min {1, max {0,1 + Y, - y3}} <¢(,3,1) =1
for all P 0, 1i=2,3. Hence {xz,xa} is OL-congested at the
input vector (1,3,1) . However to see that (x2,x3) is not MOL-
% g congested there, choose (1,3,2) and (1,4,2) giving ¢(1,3,2) =0
and $(1,4,2) = 1 .
‘
:
i
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3. PROPERTIES OF OL-, MOL- AND OP-CONGESTION

In this section OL-, MOL- and OP-congestion are further investigated
and these notions are related to other production theoretical concepts.

A factor combination {vl,vz, s vk} » 1 <k <n, is termed
essential if ¢(y) = 0 for all y ¢ D(vl,vz, T vk) . Essentiality

is related to the set A(OL) by:

Proposition 2:

A factor combination {vl,vz, e vk} i [ :.k <n, is essential

if and only if 0 € A(OL) .

Proof:

Assume 0 € A(OL) then ¢(0 +y) < ¢(0) for all ye D(vl,vz, cens Vk)

and by axiom ¢.1 (i.e., ¢(0) = 0) the factor combination {vl,vz, Gasas vk}
is essential. Conversely, assume {vl,vz, SENe vk} essential, then by
axiom ¢.1, ¢(0 + y) 2 $(0) = 0 for all y ¢ D(vl,vz, e vk) and

0 e A(OL) . Q.E.D.

The notion of weak limitationality, stating that a factor combination
{vl,vz, ooy vk} s 1 <k <n, is weakly limitational if there exists a

o o o
positive bound (xvl,xvz, by ka) on {vl,vz, il vk} such that

n o _o o
$(x) 1s bounded for all x e{x e R I(x S g ):(x B e :
+ \)1 \)2 \)k Vl \)2 \)k
was introduced into economic theory of production by R. W. Shephard (see [2]).
He proved that a factor combination is weakly limitational if and only if

it is essential. 1In this light, Proposition 2 gives an alternative

characterization of weak limitationality.
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A further characterization of the condition "0 ¢ A(OL)" and hence

for weak limitationality is next given for quasi-concave production

i it

functions, namely:

s

Proposition 3:

Y A B A

If the production function ¢ is quasi~concave, 0 ¢ A(OL) if

and only if A(OL) 1s nonempty.

Proof:

R WAL S P Y B

Assume x° € A(OL) s 1f x° = 0 then there is nothing to prove so
g : let x° >0. x° € A(OL) implies ¢ (x°) > ¢ (x° + y) for all

% y € D(vl,vz, ads vk) and by property ¢.3 of the production function,
6x%) > 600 +x° + 2+ y), 2 € [0,1] . Define y° =X + y/(1 - 1)

for A ¢ (0,1) , then y° € D(vl,vz, s vk) and by quasi-concavity,

S At P

$G°) > 00 + 2+ + y) =60+ x4 (1 -2) ¢ ¥%) 2 min (67,006 .

Thus ¢(x°) > ¢(y°) . Since y was arbitrarily chosen, ¢(x°) > ¢(y°)

for all yo € D(vl,vz, Sy vk) and by property ¢.4, ¢(y°) =0 for

all y° € D(vl,vz, e vk) , implying that ¢(0 + y°) > ¢(y°) - B YO
0 e A(OL) . Q.E.D.

As the following counterexample shows, Proposition 3 does not hold

if the production function is not assumed quasi-concave. Let

x, for x e {(x;,x,) | x, 20, x, =0}
(5) ¢(x) : =qx, for x e {(xl,xz) | x, = 0, x,32 0}

0 otherwise
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then (5) is a production function but it is not quasi-concave. The
input x, is clearly OL-congested at (xl,xz) = (1,1) , but not at J
(0,0) , showing that Proposition 3 does not hold in general without the
assumption of quasi-concavity.

As for MOL- and OP-congestion, note that
A(OP) = A(MOL) N ¢71(0) = ACoL) N ¢71(0)

where 0-1(0) H {x € lq: | ¢(x) = 0} . Consequently,
0 e A(OP) «» 0 ¢ A(MOL) = 0 ¢ A(OL) .

From the last of the above two expressions it is clear that in Propositions
2 and 3, A(OL) can be replaced by A(MOL) or A(OP) .

For the special case of a homothetic production function it is
next shown that the set of OL-congested input vectors is a cone, if !
there are such input vectors. Thus assume x° e A(OL) , then
FEE&® + y)) < F(G(x°)) for all y ¢ D(vl.vz, SeEs vk) , where H
¢(x) : = F(G(x)) 1is a homothetic production function with ;

G(A * x) =) ¢« G(x) , A >0 . From the homogeneity of the case function

G , it is clear that when x° e AOL) , G\ - x4+ 2. y) £ G(\ - xo) &

and since D(vl,vz, Videly vk) is a cone, F(G(A - x° + ) h F(G(\ - xo)) .
A>0 and y ¢ D(vl,vz, S vk) implying that A + x° ¢ A(OL) or

that A(OL) 1s a cone.

Similar proofs apply for the sets A(MOL) and A(OP) . Thus one

has:
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Proposition 4:

If the production function ¢ is homothetic and A(OL) [A(MOL),A(OP)]

is not empty, A(OL) [A(MOL),A(OP)] 1is a cone.

P
W
>
3

4

b4
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4. A PARTICULAR RESULT FOR OP~CONGESTION

The concept of jointness between production factors was introduced
in [i] to express the idea that for a positive output rate, certain
requirements may have to be placed on the input mixes. In the same paper
jointness was related to a form of congestion. Here a characterization
of jointness in terms of OP-congestion is discussed and the result is

compared to some of those found in [1]. For this reason define:

Definition 4:

A factor combination {v 1<k<n, is null

bl VKb c 0 vn} .

joint with {vl,vz, eeesy V. } 1f and only if x € 0115(3),

k

i R = 0 implies (x »X e, X ) =0 .
("1 V2 "k) Viel k2’ o

The restrictions inforced on A(OP) by null jointness for a

quasi-concave production function is clear from:

Proposition 5:

For a quasi-concave production function ¢ , a factor combination
{vk+1,vk+2, waals vn} » 1 <k <n, 1s null joint with {vl,vz, SR vk}
if and only if there is an input vector x° € A(OP) such that $z°) >0

for some z° : = x° - Yy s ¥ € D(vl,vz. Ph el vk) and
g{x | x| > |1x°1]} F\:x | x>0, (xvl.xvz, e ka) -

o _o o
(xvl.xvz, ouivy ka)}} Cc a(op) .

G C(1) 1is the closed cone spanned by the input vectors yielding the

output rate u =1 , formally, C(l) : = {x [ x= A ¢y, A >0, ¢(y) = 1} .
Note that by property ¢ .4 of the production function, C(1) = C(u) , for
u>0.
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Proposition 3 shows that if A(OP) nonempty, O ¢ A(OP) and thus,
D(vl,vz, A istarg vk) C A(OP) . This together with property ¢.3 of the
production function, implies that in Proposition 5, ¢(x) = 0 for all
xe{{x | =]l > ||x°||}n{x | x>0, (xv L )<
= v v, | =
1752 k
x° ,x° PR AT x° . Thus the relationship between Proposition 5 and
g Yk
the characterization of null jointness found in [1], namely:
Proposition 6:
For a quasi-concave production function ¢ , a factor combination
{vk+1’vk+2’ St vn} » 1 <k <n, is null joint with {vl,vz, pE s vk}
if and only if for each positive bound (xo ,xo A x° ) on
v, v v
15y k
{v;5v9s +oey v} there is a 6 > 0 such that for all xe {{x [ 11xl] > 8}

:x I x>0, (xvl,xvz, caiey ka) < (xsl,xgz, Siniey x3k>}}, o(x) =0,

is clear.

In proving Proposition 5, the following lemma is of use:

Lemma:

Let KCR: , 0 e K be a closed cone such that the intersection
K ﬁD(vl,vz, Wiy vk) » 1 <k <n, is empty. Then for each positive
bound (xgl,xgz, sliiay xgk) on the subvector (vl,vz, v vk) , the

o (o] o
set Kn{x | x > L G (xvl,xvz, sy ka) < (xvl.xvz, deie'y ka)}

is compact.

Proof:
o _o o
Let [x ,X , ¢o0y X be any positive bound on the subvector
b e Yk

(vl,uz, seie g vk) » 1 <k <n, and define s° . -Kﬁ{x l x>0,

o _o o ()
T T EAE - S (X, 9%, » coey X + The set S 1s closed as
( R R "k) ( V1TV "k)}
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an intersection of two closed sets. Thus we only have to show that it
is bounded. Assume conversely that there is an infinite sequence
{xz} C s° such that ||xz|| + 4o ag £ + 4= , Since by assumption

the subvector (x ,X , ..., X is bounded, IIxL ,xl i i xl ||
v,y v v v

k Kkl k42 n
must under these conditions tend to +» as 2 > += ., Next, define

the sequence of rays e ot | A >0} . Since (x <. IR T )
v, *"y v
. : (e 3
2 is bounded, lim Pz € D(vl,vz, «ess V. ) , contradicting the condition
9 Q-4 k

L: KﬂD(vl,v ey vk) empty. Hence, ° 1s a compact subset of R
; .

2 +

and since the bound on {x ,Xx , ..., X was arbitrarily chosen
b, i Yk

the lemma is proved. 3 Q.E.D.

To prove Proposition 5, assume that the factor combination

{“k+1’“k+2’ =y vn} » 1 <k <n, is null joint with {vl,vz, ey vk}

i n BT i i

then C(1) F\D(vl,vz, vieiels vk) is empty (see Proposition 1 in [1]).

From the second part of property ¢.1 of the production function, there

I

1s z° € C(1) such that ¢(z°) >0 . Now, C(l) 1is a closed cone with

: 0 € C(1) and hence the conditions of the lemma are satisfied. Consequently

there is an input vector x° :=2% 4 y for y e D(v Vps ey vk) such

that ¢(x) = 0 for all x ¢ {{x | )] > =]y ndx | = 20,
o

4
g o o
R (RN X ey X s proving the first part of
("1 2 "k) ("1 "2 "k)

Proposition 5.

To prove the converse, assume there is an input vector x° € A(OP)
such that ¢(z°) > 0 for some 2° : = x° - Yy .Y E€ D(vl.vz, e vk)
and {{x RIFERIN {x | x>0, (xv VX, 5 eees X ) =

k- R k

il AR x° CA(OP) . From Proposition 3 and property ¢.3 of the
v,y Vi
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production function, ¢(x) = 0 for all xce {h&l Hxll > ]]1x°]]} n

x l x > o, (x aX ) < (xo ,x° A S x° ) . Clearly,
{ 2 e Yk ol e Yk

I T68} v.)

since C(Ql) = C(¢(z°)) is a closed convex cone, C(1) F\D(vl,vz, cees Yy
is empty and hence by Proposition 1 in [1], the factor combination

{vk+1.vk+2, o vn} is null joint with {vl,vz, Sy vk} » proving
the proposition.

Note that quasi-concavity is not used in the first part of the
proof of Proposition 5, but as the following example (found in [1])

shows 1t is essential for the second.

(6) ¢(xl,x2) : = min {xl, max {O,x2 - x?}} 5

This production function is clearly not quasi-concave but it satisfies
the conditions for the second part of the proof, i.e., ¢(1,2) > 0,

o(1 + y1,2) = 0 for all Yy 2 4 . However as shown in [1], X, is

not null joint with Xy -
Also note that the condition ¢(z°) > 0 for some 2z° : =x° - ¥i's

y € D(vl,vz, ey vk) is essential for the second part of the proof.

Example (3) above shows this.

Finally, as the next example shows, the condition, {{x RIFERIFEI s
x | x >0y (x O Rl ) = (xo "N ) CA(OP) 1is also
R k o Wil Yk

essential for the second part of the proof.

min {xl.xz} for x € D(3)
(7) 0(31 ’xzoxs) : =

0 otherwise.

!
i

A N G e S e NG S S
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This production function is quasi-concave. However, ¢(1,1,0) =1
and ¢(1,1,1) = 0, i.e., it does not meet the above requirement.
Consequently the factor combination {xl,xz} is not null joint with

X3 , as would have been the case if in addition the above condition was

met.
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5. A LAW OF VARIABLE PROPORTION

Consider the following illustration of a two factors production

function ¢(x1,x2) , where the first factor is kept constant while the

second may vary.

¢(§1.x2)A

1) ) Q) 4)

Four phases are distinguished. The first (1) when output is in-
creasing, the second (2) where it reaches its maximum and the third when
output decreases with increases of x, and fin;lly the fourth (4) when
output is null.

Over the four regions the factor proportion (xllxz) is changing
and production variation like this has become known as a law of variable
proportion.

In relation to the above forms of congestion and Proposition 5,
phases (2), (3) and (4) are of interest. Note that in Propositiom 35,

z° may be chosen so that ¢(z°) = max {Mx) | xetx | [Ix]] < 11=°I]}
. {x l 220,18 X ;5 suoey X - [x° ,x° 5 sy x° ) , since the
{ 5 ( b Yo "k) ("1 2 k

production function is upper semi-continuous (property ¢.5). Also since

SRR
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5 o AN sl S
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¢(x) =0 for all x e d{x | ||x]| > ||I=°||}nlx| x>0, (x ,x , ..., x, )=
. G Ty Yk

A e R , both phase (2) and (4) are described in Proposition 5.
vty Ve

Consequently, if {x | ¢(x) = $(z°)} 1is contained in A(MOL) a law of

variable proportion is given. Formally:

Definition 5:

A law of variable proportion is defined for the factor combination
{\al,vz, v vk} » 1 <k <n, if there 1is a x° ¢ A(OP) such that
$(z°) > 0 , where ¢(z°) : = max {{Mx) | =l < [I=°[[}nlx [ x>0,

(xvl,xvz, ek ka) - (xg ,xg 4wy x:k)}} and {x | ¢(x) = ¢(z°)} C A(MOL)
L2

and where {{x | ||x|| > ||x°||}n{x | x>0, (x S e X )-
- v \’2 \)k

o _o o
(xvl,xvz, e ka)}}C A(OP) .

From Proposition 5 the following corollary is obvious:

Corollary 1:

Let the production function ¢ be quasi-concave and A(OL) = A(MOL) ,
then there is a law of variable proportion for the factor combination
{vl,vz, A vk} » 1 <k <n, if and only 1if the factor combination
{vk+1'vk+2' ey vn} 1is null joint with {vl,vz, ey vk} .

As an immediate consequence of this corollary and Proposition 1

one has:

Corollary 2:

Let the production function ¢ be quasi-concave and D(vl,vz. PP \’k)
be one dimensional, then there is a law of variable proportion for the
factor combination {vl.vz. PR vk} » 1 <k <n, 1if and only if the

factor combination {"»1'%0-2' Vudy vn} is null joint with {vl.vz. Sy vk) 5
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